← Back to Articles

Vector Algebra

Jamie Z 2025-05-13

Learning Goals

  • Represent vectors in component form (i and j notation)
  • Calculate the magnitude of a vector.
  • Perform scalar multiplication on vectors.
  • Add and subtract vectors.
  • Determine unit vectors.
  • Apply vector addition to find the position vector of a point given other points.
  • Understand and apply concepts of parallel, collinear, and perpendicular vectors.
  • Calculate the dot product of two vectors.
  • Resolve vectors into components (scalar projection).
  • Determine the angle between two vectors.

Scalar Multiplication

Multiplying a vector by a scalar k changes its magnitude. The direction remains the same if k > 0, and is reversed if k < 0.

In Cartesian form: kg = kxᵢ + kyⱼ

Vector Between Two Points

Given points A and B with position vectors a and b respectively, the vector from A to B (AB) is: \(\overrightarrow{AB} = \mathbf{b} - \mathbf{a}\)

Parallel and Collinear Vectors

Two vectors a and b are parallel if a = kb, where k is a scalar (k ≠ 0).

Two vectors are collinear if they lie along the same line. This also requires a = kb.

Dividing a line segment into a ratio

image.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIAZI2LB466Q2QPDMNZ%2F20251008%2Fus-west-2%2Fs3%2Faws4_request&X-Amz-Date=20251008T045314Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBwaCXVzLXdlc3QtMiJHMEUCID4RO1uTxxFtfhoY8LGVZ3SnKRWbNOsjIjz2Z6A3PYN7AiEA%2B5UJKrsU5WiVprpxdue5SXRBDb0rd4CvfL3mdiME6boqiAQItf%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAAGgw2Mzc0MjMxODM4MDUiDAp0pRkxt38f2zWfFSrcA0QYCImpJ0MxqG90MaN3iPKPTcJYLxD3x9Z73vTfVH0cFk6y97wIpC%2B1bqXBZtyH%2B6XscZbwcNmmId6%2Fv6afXh9ij%2BQWKG4xIDFyT4cKkYG%2Frj3wJ314pPLWv06nI423I28UNBtShnsVNLxVUzSotb1TKTlQCvplc3INVeE3QbwnOr82IXLz1oS4o6JEstl%2B2C%2BQQIACGs%2FXJYQ%2FR93bbN8H6LJU1oQgoMvmBmL0FwL51rMlyQWrHlWtv4nWItdzaVnwv08TR5V9clD5azvOGot0cW7PQ6iCrstrFrUqjF%2BxvzWH2S6u4uE33zvdBW6Fi1KI2MExdUbTNqJY%2FA0z07ylWCUD5wT8NJ59MJvbJwsuIU6mpHFo9skLoZZwQf5vYUI924faZB3B5KXwt2evCA%2FHKAFxLSLyk%2FdhP3Uy007GcyZv%2BTTLLMh3HiyuhtB0aoSTo8xOUh2W%2FzGrZxpWIJrn6iCzOtkbU3srkj7RnPwpKERXjPxOkjMHLRwxjqa0TNyIevNX2o13EpuOEfUL0PNd%2BxJ0oBAhRsNKzQsvf7MOXey5NwbJyHyLQfBUZGvG4HkJZE8dUExp1MlaEqNNp6%2BaJ81EVe0chlWUHY2B3oIHpFydkPktK4XujgcNMObGl8cGOqUB3BFAepy3x6%2F%2FHlrwaGYw9TON90jQmnaUgo%2Btg59kkMMT%2B7jAojhMFopJSDy5IfOvQOhU8pEoHaQp%2Fl8RcIb2e8zqA6WErlaSeqtSePOm%2FClVpHi9cXxyL3w%2BlM5QYmsCOBTqoucdYke9EQRyuRBhy4d4EpvWlQFoY8JZWlY%2F%2BehR89I0ckiNevdmXWZvFSfzf74C%2Fe9U8TOme29Zb3axcC8diaep&X-Amz-Signature=e8c10597076b00e278760f02a4261419e0638c2adca0ad1b665aee1ad37b1684&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject

Dot Product (Scalar Product)

The dot product of two vectors a and b is denoted a ⋅ b. It's a scalar value. \(\mathbf{a} \cdot \mathbf{b} = | \mathbf{a} | | \mathbf{b} | \cos{\theta}\)

where θ is the angle between the positive directions of a and b.

Alternatively, if a = x₁ᵢ + y₁ⱼ and b = x₂ᵢ + y₂ⱼ: \(\mathbf{a} \cdot \mathbf{b} = x_1x_2 + y_1y_2\)

Perpendicular Vectors

If two vectors are perpendicular, the angle between them is 90°. Therefore their dot product is zero.

a ⋅ b = 0

Scalar Projection of a onto b

The scalar projection of vector a onto vector b gives the length of the component of a in the direction of b.

\[\]

\mathbf{a} \cdot \hat{\mathbf{b}} = |\mathbf{a}| \cos{\theta} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}

\[\]

image.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIAZI2LB466Q2QPDMNZ%2F20251008%2Fus-west-2%2Fs3%2Faws4_request&X-Amz-Date=20251008T045315Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBwaCXVzLXdlc3QtMiJHMEUCID4RO1uTxxFtfhoY8LGVZ3SnKRWbNOsjIjz2Z6A3PYN7AiEA%2B5UJKrsU5WiVprpxdue5SXRBDb0rd4CvfL3mdiME6boqiAQItf%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAAGgw2Mzc0MjMxODM4MDUiDAp0pRkxt38f2zWfFSrcA0QYCImpJ0MxqG90MaN3iPKPTcJYLxD3x9Z73vTfVH0cFk6y97wIpC%2B1bqXBZtyH%2B6XscZbwcNmmId6%2Fv6afXh9ij%2BQWKG4xIDFyT4cKkYG%2Frj3wJ314pPLWv06nI423I28UNBtShnsVNLxVUzSotb1TKTlQCvplc3INVeE3QbwnOr82IXLz1oS4o6JEstl%2B2C%2BQQIACGs%2FXJYQ%2FR93bbN8H6LJU1oQgoMvmBmL0FwL51rMlyQWrHlWtv4nWItdzaVnwv08TR5V9clD5azvOGot0cW7PQ6iCrstrFrUqjF%2BxvzWH2S6u4uE33zvdBW6Fi1KI2MExdUbTNqJY%2FA0z07ylWCUD5wT8NJ59MJvbJwsuIU6mpHFo9skLoZZwQf5vYUI924faZB3B5KXwt2evCA%2FHKAFxLSLyk%2FdhP3Uy007GcyZv%2BTTLLMh3HiyuhtB0aoSTo8xOUh2W%2FzGrZxpWIJrn6iCzOtkbU3srkj7RnPwpKERXjPxOkjMHLRwxjqa0TNyIevNX2o13EpuOEfUL0PNd%2BxJ0oBAhRsNKzQsvf7MOXey5NwbJyHyLQfBUZGvG4HkJZE8dUExp1MlaEqNNp6%2BaJ81EVe0chlWUHY2B3oIHpFydkPktK4XujgcNMObGl8cGOqUB3BFAepy3x6%2F%2FHlrwaGYw9TON90jQmnaUgo%2Btg59kkMMT%2B7jAojhMFopJSDy5IfOvQOhU8pEoHaQp%2Fl8RcIb2e8zqA6WErlaSeqtSePOm%2FClVpHi9cXxyL3w%2BlM5QYmsCOBTqoucdYke9EQRyuRBhy4d4EpvWlQFoY8JZWlY%2F%2BehR89I0ckiNevdmXWZvFSfzf74C%2Fe9U8TOme29Zb3axcC8diaep&X-Amz-Signature=759297e8473059ad9ff61dfd05f23dceb3d22d43000ad7638be0ebf31c28d4be&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject

When a light shines on a meter ruler, it projects a shadow on the floor. The scalar projection is the shadow length, i.e. scalar projection tells us how much a vector points along a certain direction.

Vector Projection

The vector projection of vector a onto vector b, gives the component of a that lies along b. It's a vector quantity.

  • (a ⋅ b) : The dot product gives the amount of a that is in the direction of b.
  • |b|: Dividing by |b| normalizes the projection to the length of b.
  • b: Multiplying by b ensures the result is a vector pointing in the same direction as b.

image.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIAZI2LB466Q2QPDMNZ%2F20251008%2Fus-west-2%2Fs3%2Faws4_request&X-Amz-Date=20251008T045315Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBwaCXVzLXdlc3QtMiJHMEUCID4RO1uTxxFtfhoY8LGVZ3SnKRWbNOsjIjz2Z6A3PYN7AiEA%2B5UJKrsU5WiVprpxdue5SXRBDb0rd4CvfL3mdiME6boqiAQItf%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAAGgw2Mzc0MjMxODM4MDUiDAp0pRkxt38f2zWfFSrcA0QYCImpJ0MxqG90MaN3iPKPTcJYLxD3x9Z73vTfVH0cFk6y97wIpC%2B1bqXBZtyH%2B6XscZbwcNmmId6%2Fv6afXh9ij%2BQWKG4xIDFyT4cKkYG%2Frj3wJ314pPLWv06nI423I28UNBtShnsVNLxVUzSotb1TKTlQCvplc3INVeE3QbwnOr82IXLz1oS4o6JEstl%2B2C%2BQQIACGs%2FXJYQ%2FR93bbN8H6LJU1oQgoMvmBmL0FwL51rMlyQWrHlWtv4nWItdzaVnwv08TR5V9clD5azvOGot0cW7PQ6iCrstrFrUqjF%2BxvzWH2S6u4uE33zvdBW6Fi1KI2MExdUbTNqJY%2FA0z07ylWCUD5wT8NJ59MJvbJwsuIU6mpHFo9skLoZZwQf5vYUI924faZB3B5KXwt2evCA%2FHKAFxLSLyk%2FdhP3Uy007GcyZv%2BTTLLMh3HiyuhtB0aoSTo8xOUh2W%2FzGrZxpWIJrn6iCzOtkbU3srkj7RnPwpKERXjPxOkjMHLRwxjqa0TNyIevNX2o13EpuOEfUL0PNd%2BxJ0oBAhRsNKzQsvf7MOXey5NwbJyHyLQfBUZGvG4HkJZE8dUExp1MlaEqNNp6%2BaJ81EVe0chlWUHY2B3oIHpFydkPktK4XujgcNMObGl8cGOqUB3BFAepy3x6%2F%2FHlrwaGYw9TON90jQmnaUgo%2Btg59kkMMT%2B7jAojhMFopJSDy5IfOvQOhU8pEoHaQp%2Fl8RcIb2e8zqA6WErlaSeqtSePOm%2FClVpHi9cXxyL3w%2BlM5QYmsCOBTqoucdYke9EQRyuRBhy4d4EpvWlQFoY8JZWlY%2F%2BehR89I0ckiNevdmXWZvFSfzf74C%2Fe9U8TOme29Zb3axcC8diaep&X-Amz-Signature=b948bb808af7afc0432912c4b4c8215925703ed6f4f14bb3d02dcf082629d221&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject

Angle Between Two Vectors

Using the dot product formula, we can find the angle θ between two vectors:

\( \cos{\theta} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}\)