← Back to Articles

Vectors in Two Dimensions

Jamie Z 2025-05-13

Learning Goals

  • Represent vectors using Cartesian form and polar form.
  • Convert between Cartesian and Polar forms of vectors.
  • Calculate the magnitude and direction of a vector.
  • Perform vector addition and subtraction.
  • Understand unit vectors and their use.

1. Vector Representation

Vectors have both magnitude (size) and direction. They can be represented in two main ways:

Cartesian Form (Component Form)

  • A vector is expressed as a column vector: \(\begin{pmatrix} x \ y \end{pmatrix}\), where x and y are the components of the vector along the x-axis and y-axis, respectively.

image.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIAZI2LB466YX6PGLPE%2F20251008%2Fus-west-2%2Fs3%2Faws4_request&X-Amz-Date=20251008T045246Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBwaCXVzLXdlc3QtMiJHMEUCIF3RMZKdBN5zmLIF7sS10US3IDn0HrFRuknV3hqDVCrtAiEA5IHKs%2F1k13d678pzcTFuwAbY1N2SUQHaWPjbZB%2FVu4wqiAQItf%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAAGgw2Mzc0MjMxODM4MDUiDABcZC78tzadxgopKSrcAxZF50Xi%2BgiaMrQNGjSOb8Sr0H%2F7k%2B7pIwEpx6yvkL5IVhu37BOHd1xRu9PZ%2BYQaEOa7VkGJmlUnW566UyDWEFYLJTkroKWpTI9Ts36NeEqamFX68CCRj%2FDMu4Q5WsPFhby691n71XMpTd7IMiA4FcK1nQu3hwr1NxNSf5UiJXS%2FmG8rF1K6F1RpswmhebtUgsoIcVAMbQfkAlRaibrVtvuBPDhbUis2IKZ4PMYVEYCTdWiIZADfYo1xFveibCiTJoaJwLnxkvhvos%2Bdx3NLdX%2BlmxtrU5x%2Fr4Wqgvvcdkcq6%2BE4jNmmqRUvgdKTL1nTIZoF3kmFg5LZXabiKAIsR6ZaXmxREEGZnl51eC4URKgEYxAsHjHRijlV%2F1paySVrZsyS1rnKJ6fYocLS7IsyvtOVMtpJm5HQ%2BUmDXdWyEqNInL1tsArn7EcVmjR4OfkRTTU9sR2ZKCq%2FQRC%2F1rgQb8r8eQGNsm7z6pJa8vTcGWbe4Om01riJfLXygDM4wAqe59fjZp10Gixg2NGGRhJjr9XOiiQD5FMP3XL8no52yw2KJAvekVGOsC1baTJ8FbCq4cHk5Plh2AM0PA6bKyJ5YRK8kn50xwWIZdj5ylobuRqp6E%2F0YHRISmv6FzB3MIDFl8cGOqUBRUPbKY9AS6xBAkDBMdmOFvcN6dV0v%2FwSXC9smM%2B3vIBGK7bMAbHn9922cx20bNp659%2Fhzp0v6mH7GulKruJWk%2FWSOsA8lpHExEribk%2BlBjiTnLAIyiGCQ%2FiuZsqGcBhN3MQQA%2BSH7cix7EuMjCYGhS4HKJzvqyU%2FKiD8apGKk%2FFabIY%2Fx3DmFvSD5%2B9mjOn9FQLpKKplaN1pSaIf2Ats3muPRzRH&X-Amz-Signature=099ae2aa928d449929899e1fc603f01f45dd71dc0c61968464bc321949ea63bc&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject

  • Represents displacement from the origin to a point (x, y).

Polar Form

  • A vector is expressed as (r, θ), where:
    • r is the magnitude of the vector (distance from the origin).
    • θ is the angle the vector makes with the positive x-axis (bearing) measured in degrees.

2. Converting Between Forms

Cartesian to Polar

  1. Magnitude (|v| or r): Use Pythagoras’ theorem: \(r = \sqrt{x^2 + y^2}\)
  2. Direction (θ): Use trigonometry: \(\theta = tan^{-1}(\frac{y}{x})\). Important: Consider the quadrant of the vector to get the correct angle. Your calculator may only give angles between -90° and 90°. Adjust accordingly.

Polar to Cartesian

  1. x-component: x = _r_cos (θ)
  2. y-component: y = _r_sin (θ)

3. Magnitude of a Vector

The magnitude (length) of a vector \(\mathbf{v} = \begin{pmatrix} x \ y \end{pmatrix}\) is calculated as:

\[ |\mathbf{v}| = \sqrt{x^2 + y^2} \]

4. Direction of a Vector

The direction (angle θ) of a vector can be found using the inverse tangent function: Remember to consider the correct quadrant for θ.

\[ \theta = tan^{-1}(\frac{y}{x}) \]

5. Vector Addition and Subtraction

Adding Vectors

To add vectors, add their corresponding components:

If \(\mathbf{a} = \begin{pmatrix} x_1 \ y_1 \end{pmatrix}\) and \(\mathbf{b} = \begin{pmatrix} x_2 \ y_2 \end{pmatrix}\), then \(\mathbf{a} + \mathbf{b} = \begin{pmatrix} x_1 + x_2 \ y_1 + y_2 \end{pmatrix}\)

Subtracting Vectors

To subtract vectors, subtract their corresponding components:

If \(\mathbf{a} = \begin{pmatrix} x_1 \ y_1 \end{pmatrix}\) and \(\mathbf{b} = \begin{pmatrix} x_2 \ y_2 \end{pmatrix}\), then \(\mathbf{a} - \mathbf{b} = \begin{pmatrix} x_1 - x_2 \ y_1 - y_2 \end{pmatrix}\)

6. Unit Vectors

  • A unit vector has a magnitude of 1.
  • To find the unit vector in the direction of a vector v, divide the vector by its magnitude: \(\hat{\mathbf{v}} = \frac{\mathbf{v}}{|\mathbf{v}|} = \begin{pmatrix} \frac{x}{|\mathbf{v}|} \ \frac{y}{|\mathbf{v}|} \end{pmatrix}\)

7. Position Vectors

  • A position vector describes the location of a point relative to an origin (typically (0,0)).
  • If A is at coordinates (x, y) and B is at coordinates (x, y), then \(\overrightarrow{AB} = \begin{pmatrix} x_2-x_1 \ y_2 -y_1\end{pmatrix}\)

8. Important Trigonometric Values (for quick reference)

Angle (θ) sin(θ) cos(θ) tan(θ)
0 1 0
30° ½ √3/2
45° √2/2 √2/2 1
60° √3/2 ½ √3
90° 1 0 Undefined

Key Reminders:

  • Always draw a diagram to help visualize the vectors and their directions.
  • Pay attention to quadrants when finding angles using inverse trigonometric functions.
  • Be careful with units (ensure consistency).
  • Use your calculator effectively, especially for inverse trigonometric functions.

image.png?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=ASIAZI2LB466UF7BTSJK%2F20251008%2Fus-west-2%2Fs3%2Faws4_request&X-Amz-Date=20251008T045245Z&X-Amz-Expires=3600&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBwaCXVzLXdlc3QtMiJHMEUCIQCaQQhHA%2FKVDld8kVw%2B6Ksyh41wNIAPnAN%2B5G5A7NqXaAIgYYfCpjdaUjynlph6jDHMtdY%2BwJwobqHPBEiCm2bdiuMqiAQItf%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAAGgw2Mzc0MjMxODM4MDUiDC6rwybQYtJzeCm6yircA%2B3%2BpNjfp1Wz%2FKQ0ly9xbScElxOgKzcUXQwLhHjZXwVXjWZm%2F1x1D821Pp6Mr%2BHnFYfVun3jlHSDPW7fNDpQKEAkJMd5KXwEznLem1M4y1%2FElKNlfCjMsEWnazEEZyYW2Ty2ZrS2EbI7hKvB2DrHb5d1EM08KtprGFoIfbGhWVoDnOuEBvsEQICluiw5SlHbcNomYO6EbXPyD5CehcLn0%2FcsgZmxuaGopUzbUJ6VivpavSU4K9RWcv2Db%2FKPG6Nn0SK6JUzIIQsB%2FMdlTFHnFXHqZLH4OF6YhLcXc40gub8DruHP0swHjHlVhKvkmVmTWi1kH%2F3SbyCblSy9vO8Quqf2XPkkB9jSK%2FVZr2F49mUzBtbT8%2F4Hk1ush7eTlwsoRtPxq%2BKJJJbewILm3aT7wOECCtYb%2FuC93r81XxtwFMgZt809dn9MHDU6hrk03VVoWCr5YGvLliilKhZ1BYaoBddBf2MzlgkFehxrwglo8LPeNT6ZGci4QVltj3d1%2Ba28kyA9WmvdqQHNeR49Q%2FX%2FGXIWrmnIBu5Sk%2B7%2FS%2F%2BPWCoDtZZxf1NWP4WyL6uYjXXDhPvfqdTUSL066LkWqR1Iws%2BL6rJYD%2BuTe6PxIwF7h1w68q93Pia8VNW9fs7dMIPFl8cGOqUBGSzY%2FvMYGb6mgRx9%2BC97JB0bq48QxlZPVQwSJo3irl3DwyzxnV%2Bfl8E74byakc0fM4cDryTipxaQuvdWZEqo7q9WiuoWVyzi93VAnh7WQ2Xq6iAstOckV%2FbXrjf3Q8TFrI0EQQGPWA9x8sUHimNIxwB5cTxoCtl3v%2FhaqYKXfl55iIjO3yw66DlRFWbjJfA5bDBQdLkKR5cWttX73By50ZmnCXiS&X-Amz-Signature=4f99329c33f8ce3d873b74f71b8cdf621836b0eda9320ab70afb403ce16da998&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject